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LElTER TO THE EDITOR 

Linear response and fluctuations in stochastic mechanics 
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Received 29 March 1985 

Abstract. The relation between response function and correlation function is derived for 
the stochastic process associated to the ground state within the framework of stochastic 
mechanics. The new relationship clarifies the energy-conserving character of Nelson’s 
stochastic processes. 

In Nelson stochastic mechanics (Nelson 1966, 1984a, b) quantum states are 
represented as classical Markov random processes obeying stochastic differential 
equations. Formally these equations are identical to the Langevin equation for the 
Brownian motion, the physics however is fundamentally different (Guerra 1981, Figari 
et a1 1984). In the Langevin case the fluctuations are due to the environment and are 
intimately related to dissipative and time irreversible behaviour. Conversely, in Nelson 
stochastic mechanics fluctuations are intrinsic to the microscopic description and are 
therefore compatible with energy conservation and time reversible behaviour. 

The dissipative character of the dynamics in the Langevin scheme induces the 
relation between response functions and correlation functions which goes under the 
name of fluctuation-dissipation theorem (FDT) (Callen and Welton 1951, Kubo 1957, 
1966). It is then interesting, as a further contribution to the understanding of the 
stochastic processes arising in stochastic mechanics, to investigate the novel form of 
the relation between response and correlation functions which is expected within 
Nelson’s dynamical scheme. In this case in fact such a relationship must reflect the 
energy conserving character of the stochastic time evolution. 

Consider a particle in a potential V ( x )  and subjected to a small time-dependent 
perturbation of the form -Ax cos ut, where x is the position of the particle. The linear 
response function is real and it is given by (Landau and Lifshitz 1967) 

where wmo = ( E ,  - Eo) /h ,  xmo,= (mlxlO) and w Z wm0.  
Next, consider the position correlation function in the unperturbed equilibrium 

state (ground state). According to Nelson each wavefunction $(x, t )  is associated to a 
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Markov random process x (  I )  which obeys the It8 stochastic differential equation: 

dx = b ( x ,  t )  d t+dw (2) 

where w (  t )  is a Wiener process with expectation values (dw( t ) )  = 0, (dw2( t ) )  = h / m  
and the drift is related to the wavefunction $ = exp(R +iS/A) by 

i a  
m ax 

b ( x ,  t ) = -  - [ S ( X ,  t ) + h R ( x ,  t ) ] .  (3) 

For the ground-state wavefunction the drift is time independent and the above equation 
can be rewritten as 

b ( x ,  t )  = -a w / a x  (4) 

with W ( x )  satisfying the Riccati equation 

An equation of the form ( 5 )  arises also in a different context (see, for example, Van 
Kampen 1977) ,  namely when the Fokker-Planck equation associated to the stochastic 
differential equation (2) is mapped into the imaginary time Schrodinger equation with 
the potential V ( x )  - E, .  Consequently, the transition probability of the Nelson stochas- 
tic process associated to the ground state can be written in the form 

where cpm(x) and E ,  are the eigenfunctions and eigenvalues of the potential V ( x ) .  

is ( x )  = 0, we compute the position correlation function from 
Assuming for simplicity that V ( x )  is an even function of x,  so that the ground state 

Sxx( t )  = ( x ( O ) x (  t ) )  = dx dx‘ p, (x)P(x’ t lxO)xx’  (7)  1 1  
where p o ( x )  = cpi(x)  is the ground-state probability density. Using equation (6) it is 
easy to obtain 

where S x x ( w )  is the Fourier transform of the Nelson correlation function. Finally, 
comparing equations ( 1 )  and (8) we find 

X ‘ ( i o )  = S , ( w ) / h  (9) 
which yields the relation between fluctuations and response function in the Nelson 
process associated to the ground state. In order to establish the relationship between 
the above result and the formulation of the FDT in quantum mechanics, we recall some 
formal results of Green’s function theory (Rickayzen 1984).  Introducing the time- 
ordered correlation function G( t )  = ( T [ x (  t ) x ( O ) ] )  and the symmetrised correlation 
function C( t )  = t ( x (  t ) x ( O )  + x(O)x(  t ) )  where the average is taken over the thermal 
equilibrium state, the Fourier transforms of the above quantities are related to the real 
part ~ ’ ( w )  of the response function by 

G ( w )  = -ihX’(o)+ C ( W ) .  (10) 
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Since C ( w )  is related to the imaginary part ,y”(w) of the response function by the FDT 

C ( w )  = h coth( phw/2 )~” (w)  (11) 

G(w) = -ih,y(w). (12) 

in the ground state ( p + a) from equation (10) we find 

On the other hand, from causality, the response function is analytical in the upper 
half plane. Consequently, in the ground state, G(w) is the limit value on the real axis 
of a function G ( z )  analytic on the upper half plane and defined by G(z)  = -ih,y(z). 
In particular on the imaginary axis, where the response function is real, one has 

G(iw) = -ihX’(iw). (13) 

Finally, recalling (Guerra and Ruggiero 1973) that the time-ordered correlation function 
and the Nelson correlation function in the ground state are related by the Wick rotation 
S ( t )  = G(-it), we find that equation (9) is equivalent to equation (13). In other words, 
the vanishing of the imaginary part of the response function along the imaginary axis 
indicates the existence of non-dissipative dynamics and the Nelson process provides 
the realisation, in the physical real time, of such time evolution. 

One of us (PR) wishes to thank Professor Edward Nelson for many useful conversations 
and the Department of Mathematics, Princeton University for its kind hospitality. 
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